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The effects of small-scale dissipative fluidic actuation on the evolution of large- and
small-scale motions in a turbulent shear layer downstream of a backward-facing
step are investigated experimentally. Actuation is applied by modulation of the
vorticity flux into the shear layer at frequencies that are substantially higher than the
frequencies that are typically amplified in the near field, and has a profound effect on
the evolution of the vortical structures within the layer. Specifically, there is a strong
broadband increase in the energy of the small-scale motions and a nearly uniform
decrease in the energy of the large-scale motions which correspond to the most
amplified unstable modes of the base flow. The near field of the forced shear layer
has three distinct domains. The first domain (x/θ0 < 50) is dominated by significant
concomitant increases in the production and dissipation of turbulent kinetic energy
and in the shear layer cross-stream width. In the second domain (50< x/θ0 < 300), the
streamwise rates of change of these quantities become similar to the corresponding
rates in the unforced flow although their magnitudes are substantially different.
Finally, in the third domain (x/θ0 > 350) the inviscid instability of the shear layer
re-emerges in what might be described as a ‘new’ baseline flow.

1. Introduction
The flow dynamics of shear layers has a profound effect on system performance

in a number of practical applications including aerodynamic forces and moments,
optical transmission, acoustic noise, combustion efficiency and emissions and thermal
signature. It is well known that the evolution of these shear flows is largely dominated
by a hierarchy of vortical structures of decreasing scales which evolve as a result of
inherent hydrodynamic instabilities of the base flow (e.g. Brown & Roshko 1974;
Winant & Browand 1974; Ho & Huerre 1984). The susceptibility of the shear layer
to controlled excitation within the receptivity range of its unstable modes has led
to a number of attempts to manipulate the evolution of the primary (large-scale)
vortices and thereby affect global flow characteristics (e.g. mitigation of separation,
Greenblatt & Wygnanski 2000; mixing of species in non-reacting and reacting flows,
Gutmark, Schadow & Yu 1995; and suppression of unsteady aerodynamic loads,
Cattafesta et al. 2008; etc.). In some cases the flow manipulation can be complicated
or even dominated by coupling to feedback from other instabilities of the base flow
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Figure 1. Power spectra of velocity fluctuations measured in the near field of a plane shear
layer illustrating the effects of direct small-scale actuation at fd � fn (fn is the ‘natural’
frequency). The actuation results in a concomitant decrease in the energy of the large-scale
(f <fc) motions, and increase in energy of the small-scale (f > fc) motions.

such as cavity modes (Rockwell & Naudascher 1978), the near wake of stalled airfoils
(Wu et al. 1998) and vortex formation in the wake of bluff bodies (Unal & Rockwell
1988). A clear risk in excitation at or near globally unstable frequencies has been the
undesired amplification of ‘spurious’ unsteady modes as demonstrated by the cavity
experiments of Debiasi & Samimy (2003).

A different approach for modification of the flow characteristics that are associated
with the presence of the large-scale vortical structures is to affect their formation
and evolution by altering the base flow instabilities that lead to their formation. This
is accomplished using direct small-scale (‘dissipative’) actuation having characteristic
wavelengths that are typically an order of magnitude smaller than the relevant local
or global length scale of the base flow. This approach, which was demonstrated by
Wiltse & Glezer (1993), emphasizes actuation frequencies that are high enough so
that they are effectively ‘decoupled’ from the unstable frequencies of the base flow and
the effects are therefore frequency-independent (below some practical upper limit).

Figure 1 shows velocity power spectra that are measured in the near field of a
single-stream plane shear layer for the base flow and in the presence of actuation
at frequency fd which is deliberately applied within the dissipation range of the
(unforced) flow. The actuation frequency is nominally an order of magnitude higher
than the most unstable ‘natural’ frequency fn, which is often referred to (based on the
linear stability analysis) as the ‘most amplified’ frequency and is associated with the
peak spectral components of the velocity field. An important feature of the spectra in
figure 1 is the change in the magnitudes of spectral components above and below their
‘crossover’ frequency fc. In the forced flow, spectral components of the ‘large scales’
below fc are significantly attenuated while the spectral components of the ‘small
scales’ above fc are significantly enhanced. These effects indicate that direct actuation
at the small scales can lead to an acceleration of the energy cascade from the large-
to small-scale motions within the flow. Wiltse & Glezer (1998) also showed that the
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actuation results in the suppression of ‘natural’ instability modes in the baseline flow
and that the direct addition of high-frequency energy into the shear layer alters the
energy cascade across a broadband range. They further postulated that enhanced
energy transfer from large to small scales may be the driving mechanism.

The effectiveness of this actuation approach has been demonstrated in several
investigations of the suppression of separation over a broad range of Stact , including
the works of Erk (1997, Stact ≈ 100), Glezer, Amitay & Honohan (2005, Stact ≈ 10),
Vukasinovic & Glezer (2007, Stact ≈ 15) and Ben-Hamou, Arad & Seifert (2007,
Stact = 18–55). These investigators showed that even though the actuation is introduced
at scales that are typically smaller than the naturally dominant scales of the
base flow, it effectively decouples the evolution of the shear layer from the wake
instability and perhaps suppresses the inherent low-frequency feedback (e.g. in cavity
flows, Rockwell & Naudascher 1978). Such bypass of the internal flow feedback
was demonstrated by reduction of cavity noise and significant flow stabilization
(Stanek et al. 2000; Arunajatesan, Shipman & Sinha 2002) and in the suppression of
vortical structures in a single-stream shear layer that was deliberately forced within
its receptivity range (Vukasinovic & Glezer 2006).

Another example of the effectiveness of this actuation approach has been the
mitigation of optical aberrations that occur during the transmission of optical
wavefronts through a turbulent shear flow (Bower et al. 2004). This approach
was demonstrated by Zubair et al. (2007) who used high-frequency actuation in
a plane shear layer to significantly reduce optical aberrations by suppressing the
large-scale vortical motions. The numerical simulations of Visbal & Rizzetta (2008)
also show significant reduction in optical aberrations through free and cavity-bound
shear layers as a result of the suppression of the large-scale coherence by small-
scale actuation. More recently, Oljaca & Glezer (2009) used a small-scale dissipative
harmonic excitation in a two-stream shear layer to suppress the baseline ‘natural’ flow
vortices and to enhance small-scale mixing.

It would be expected that the suppression of the coherent large-scale motions
in shear flows would ultimately lead to reduced production of turbulent kinetic
energy (TKE) and diminution of overall turbulent fluctuations. In fact, these effects
were observed in a number of early investigations of forced shear layers. Vlasov &
Ginevskii (1973) reported the suppression of velocity fluctuations in the near field
of an axisymmetric turbulent jet when acoustic excitation was applied at frequencies
that correspond to multiples of a natural jet frequency (StD > 2). Similarly, Rockwell
(1972) who studied forced excitation of a plane jet by transverse oscillations identified
a ‘preservation’ regime in which a natural vortex rollup was spatially delayed
when the harmonic actuation was applied at a frequency that was about two
times higher than the natural frequency. Subsequently, Zaman & Hussain (1981)
investigated the suppression of velocity fluctuations in several shear flows using
acoustic and mechanical actuation at frequencies up to about twice the ‘natural’
unstable flow frequencies. They found that the optimal actuation frequency for
turbulence suppression was Stθ 0

∼= 0.017 (based on the initial thickness of the shear
layer), which was attributed to spatially compressed rollup and breakdown of the
forced flow. In a related investigation, Hussain & Hasan (1985) showed that this
turbulence suppression led to the reduction of the broadband far-field jet noise.
The study of Nallasamy & Hussain (1989) in a shear layer of an axisymmetric jet
showed that the maximum turbulence suppression depends on both the actuation
amplitude and frequency. In a later study, Zaman & Rice (1992) conjectured that
the suppression could result from inhibition of vortex pairing, decoupling of the
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upstream boundary layer instability from the shear layer instability, or ‘tripping’ of
the transitional boundary layer. More recently, Samimy et al. (2007) also reported
noise suppression in M = 0.9 axisymmetric jets, when high-frequency plasma actuation
is applied at StD > 1.5, substantially higher than the characteristic frequencies of the
natural jet vortices.

A number of investigations have specifically focused on the effects of direct
actuation of small-scale (or high-frequency) motions in turbulent shear flows. Wiltse &
Glezer (1998) estimated the turbulent dissipation in a jet shear layer that was forced
by cantilevered piezoelectric actuators and concluded that even a small increase
in the induced displacement perturbations at high actuation frequencies can lead
to significant enhancement of dissipation and consequently to a decrease in TKE.
Measurements in the near wake of a cylinder where the lift and drag were controlled
by small-scale (high-frequency) surface actuation upstream of separation (Honohan,
Amitay & Glezer 2000), showed a significant decrease in turbulent stresses in the
forced shear layer, suggesting the increased dissipation in the near wake is a result
of the forcing. In a numerical study of the effects of high-frequency forcing in a free
shear layer, Cain et al. (2001) concluded that the reduction in TKE in the forced flow
results from simultaneous increase of its dissipation rate and decrease in its production
rate. The decrease of turbulent stresses as a result of small-scale actuation was also
observed in the wake of an airfoil (Glezer et al. 2005) and was attributed to the
increased dissipation and a decrease of energy transfer from the free stream. Stanek
et al. (2002) hypothesized that high-frequency excitation modifies the time-averaged
velocity distributions within the baseline shear layer and thereby makes it stable to
low-frequency perturbations. This model implies that linear or nonlinear stability
analyses can be used to describe high-frequency excitation in a manner similar to
what has been used for low-frequency excitation. In a more recent investigation,
Stanek et al. (2007) emphasized the role of a coherent train of high-frequency vortices
of alternating sign in shear layer stabilization, as opposed to a train of vortices of the
same sense. Dandois, Garnier & Sagaut (2007) carried out a comprehensive direct
numerical simulation and large-eddy simulation study of separation control over a
rounded ramp by both high- and low-frequency actuation. They showed that high-
frequency actuation induces suppression in production of TKE along with reduction
in the energy of the large-scale motions and a concomitant enhancement of the energy
of the small-scale motions which was attributed to the altered stability of the base
flow, in accord with the hypothesis of Stanek et al. (2002).

The present paper focuses on the coupling mechanisms of small-scale high-
amplitude actuation on the local and global near-field evolution of a plane turbulent
shear layer that forms off a backward-facing step. This work builds on the preliminary
investigations of Vukasinovic, Lucas & Glezer (2004, 2005), Rusak & Eisele (2005) and
Lucas (2005). The main objective is to gain a better understanding of the evolution of
the actuation within the boundary layer upstream of the ensuing shear layer and its
effect on the suppression of large-scale vortical motions in its near field. The actuation
frequency is at least three times higher than the highest ‘natural’ frequency of the
present shear layer and its Strouhal number Stθ 0 = fdθ0/U0 (based on the momentum
thickness of the boundary layer at the step edge θ0 and the free-stream speed U0) is
0.05. Linear stability analysis of the role of frequency and amplitude in the evolution
of excitation disturbances within the shear layer are discussed in § 2. The experimental
set-up and flow diagnostics are presented in § 3, and the evolution of the baseline flow
(in the absence of actuation) and the effects of small-scale actuation are described in
§ § 4 and 5, respectively. Finally, concluding remarks are presented in § 6.
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2. Some comments on shear layer stability
As noted in § 1, actuation of small-scale (high-frequency) motions in a free shear flow

can lead to a significant reduction in the energy of low-frequency perturbations and
perhaps render the base flow stable to these perturbations. Therefore, it is attractive
to consider the extension of linear or nonlinear stability analyses that have been
used to model the evolution of low-frequency excitation to also model the effects of
high-frequency excitation (Stanek et al. 2002; Rusak & Eisle 2005). In fact, as shown
by Rusak & Eisle (2005), this approach can lead to a single stability analysis that
describes the influence of a wide band of excitation frequencies on the evolution of
both large and small scales within the shear layer.

The Appendix outlines multi-scale modelling (based on the Navier–Stokes equations
in the vorticity and stream function formulation) of the linearized dynamics of
perturbations in a two-dimensional shear layer that forms downstream of a backward-
facing step. The shear layer flow is characterized by an initial dimensionless natural
frequency ωn,0 at the layer origin x = 0, scaled with far-field speed U0 and the
boundary layer momentum thickness θ0 at x = 0. The natural frequency of the
shear layer decreases monotonically with distance from x =0 due to the increase
in the width of the layer. Upstream excitation is characterized by a dimensionless
(real) frequency ω =2πfdθ0/U0 = 2πStθ 0 where fd is the actuation frequency. A
linear parabolic stability equation (LPSE (A 8), in the Appendix) shows that the
resulting perturbation stream function is composed of a periodic train of vortices
that are advected downstream and described by ψ1, where the wavelength and
perturbation amplitude vary with ω, and a global mode described by ψg that is
centred near the reattachment point where the separated shear layer transitions to a
wall boundary layer. The linear growth of perturbations within the shear layer ends
when the excitation frequency is approximately 2ωn,0. This frequency is exactly 2ωn,0

only for a shear layer having a hyperbolic tangent velocity distribution (Michalke
1964).

At ‘low’ actuation frequencies, when ω is less than 2ωn,0, the solution exhibits
three streamwise domains along the shear layer. In the first, ‘near-field’ domain
the excitation frequency at each streamwise position x is less than about twice the
local natural frequency at that position and the perturbation amplitude grows with
distance from x = 0. In the second, ‘mid-field’ domain the actuation frequency at each
streamwise position is greater than twice the local natural frequency at that position
and the perturbation decays with distance from the step. The third domain is the
‘far field’, where the perturbations from the mid-field continue to decay, yet supplying
energy to the global mode of the base flow, which in turn, provides upstream feedback
from the reattachment of base flow.

To demonstrate this evolution, the shear layer of the backward-facing step base
flow at Reθ 0 = 9.5 (corresponding to Re = 1000 based on the step size H =105θ0) is
considered. In this case it is found that ωn,0 = 0.038 or Stθ 0 = 0.006 and the natural
frequency decreases along the shear layer to 0.5ωn,0 at x/θ0 = 185 and to 0.25ωn,0

at x/θ0 = 700. Using (A 9), the response ψ1 of this shear layer flow is computed
for various excitation frequencies (ω = 0.25ωn,0, 0.5ωn,0, 0.75ωn,0 and ωn,0). The
streamwise variation of the dimensionless cross-stream perturbation kinetic energy
E =

∫ +∞
−105θ0

(u′2 + v′2) dy for various excitation frequencies is shown in figure 2(a)
(here E is rescaled for all ω so that E = 1 at x = 0). The slight waviness of E is a
result of the periodic vortex train. At low excitation frequencies (ω < 2ωn,0 = 0.076),
the perturbation amplitude and energy increase with streamwise distance from the
origin, reach a maximum where the excitation frequency ω is about twice the local
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Figure 2. (Colour online) Computed response of a backward-facing step flow (Reθ 0 = 9.5,
ωn,0 = 0.038) to upstream actuation: (a) cross-section integrated perturbations kinetic energy
computed using LPSE along the shear layer at several excitation frequencies, and numerically
simulated vorticity perturbation field at (b) ω = 0.25ωn,0 and (c) ω = 2ωn,0.

natural frequency and then decay farther downstream while feeding energy to the
global mode. Furthermore, the position where the perturbation amplitude has a
local maximum shifts upstream as the actuation frequency ω increases towards the
threshold level 2ωn,0 = 0.076.

An example of the global evolution of the perturbation vorticity along the shear
layer at Reθ 0 = 9.5 and ‘low’ excitation frequency ω = 0.25ωn,0 (Stθ 0 = 0.0015) was
computed using the direct numerical simulation code of Hawa & Rusak (2001) based
on (A 1)–(A 5) and is shown in figure 2(b). The inlet condition (A 2) is used as an
unsteady excitation which represents a time-periodic train of vortices that form within
the upstream boundary layer and enter the shear layer. This vortex train is described
by κ = 0.05, g(y, t) = {1 − (2π/0.1) cos[2π(y + 0.03)/0.1]} sin(ωt) for 0.03 � y � 0.13
and g(y, t) = 0 elsewhere. The perturbation’s growth (0< x/θ0 < 600), its decay and
feed of low-frequency energy to the global mode (x/θ0 > 600) and the feedback effect
of the global mode are evident in figure 2(b).
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As noted in § 1, traditional control of free shear flows has relied primarily on the
amplification of fundamental instability modes within the receptivity range of the
base flow where the excitation frequencies typically range from the most unstable fre-
quency fn,0 = ωn,0/2π at the shear layer origin down to a fraction of that value that
is amplified farther downstream (Ho & Huerre 1984).

The natural receptivity of the shear layer results in a limiting shortest near-field
domain that is related to excitation at the highest possible frequency within the
receptivity band (about 2fn,0) and is typically dominated by coherent motions at
the most amplified frequency. The analysis (in the Appendix) shows that when the
excitation frequency is higher than about twice any of the natural frequencies along
the shear layer (i.e. when ω > 2ωn,0), the ‘natural’ near-field behaviour is suppressed.
In this case, the perturbation amplitude decays with distance from the shear layer’s
origin, feeding much less energy to the global mode of the baseline backward-
facing step flow than the naturally amplified low-frequency modes. The computed
streamwise variation of the dimensionless cross-stream perturbation kinetic energy
E for excitation frequencies ω > 2ωn,0 = 0.076 (figure 2a) show that the perturbation
amplitude and energy decay with distance from the shear layer’s origin. The simulated
global evolution of the perturbation vorticity along the shear layer at ‘high’ excitation
frequency ω = 2ωn,0 (Stθ 0 = 0.012 with κ = 0.05 at Reθ 0 = 9.5) is shown in figure 2(c).
The perturbations remain relatively strong and decay slightly within the range
0 < x/θ0 < 100, followed by a significant decay within the domain 100< x/θ0 < 500
and a considerably lower feed of energy to the global mode in the domain x/θ0 > 500
as predicted by (A 8). These results show that unlike the excitation at ‘low’ frequencies,
‘high-frequency’ excitation eliminates much of the feedback from the reattachment of
the baseline flow.

It is noted that the increase in the actuation frequency leads to an inherent
enhancement of mixing within the shear layer by ‘direct’ excitation of small-scale
motions close to its origin and relies less on ‘indirect’ mixing by the ultimate
breakdown of the large-scale structures. Furthermore, it is also clear that owing
to the inherent attenuation of the high frequencies along the layer, the actuation has
a relatively small effect on the evolution of the base flow if the actuation amplitude
is sufficiently low. Therefore, when the actuation frequency is above the shear layer’s
receptivity band, it is typically necessary to increase the actuation level in order
to alter the stability characteristics of the base flow. Large-amplitude excitation is
also necessary to overcome low amplification rates when actuation is applied at
frequencies that are substantially below the baseline ‘fundamental’ frequency (Ho &
Huerre 1984). The present work considers three characteristic actuation levels that
induce small, moderate and strong changes in the mean velocity field near the layer’s
origin. It is shown that excitation of high-frequency modes results in a near-field
increase in cross-stream width and reductions in the receptivity to low-frequency
disturbances and feedback effects of the global mode. High-frequency actuation at
finite levels is clearly characterized by nonlinear interactions between the high- and
low-frequency modes and the global mode of the flow. The analysis of these nonlinear
interactions is the subject of a forthcoming paper.

3. Experimental set-up and flow diagnostics
The present investigation is conducted in a low-speed closed return wind tunnel

that is specifically designed for high-resolution particle image velocimetry (PIV)
measurements. The tunnel test section measures 25 cm × 41 cm × 132 cm, has a
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Figure 3. Schematic drawings of the test section (a) and of the (inverted) flow geometry (b).

free-stream speed of up to 35 m s−1 and the free-stream turbulence level is lower
than 0.5 %. A single-stream shear layer is generated by flow separation off the edge
of a backward-facing step on the top wall of the test section, as shown in figure 3(a).
The step spans the full width of the test section and its height is H = 50.8 mm
(for convenience, the present results are presented in a flipped view as shown in
figure 3b). The boundary layer upstream of the step is turbulent as a result of a
1.0 mm diameter trip wire that is mounted at 350 mm upstream from the step edge. In
the absence of actuation, the boundary layer thickness at the step edge is δ0 = 4.7 mm,
the displacement thickness is δ∗

0 = 0.49 mm, the momentum thickness is θ0 = 0.35 mm
and the Reynolds number is Reθ 0 ≈ 312.

Actuation was effected by a spanwise cluster of six individually addressable synthetic
jet modules that are integrated into and issue normal to the step surface. Each module
is driven by two piezoelectric disks through two adjacent rectangular orifices 1.8 mm
apart whose long sides (18.3 mm) are aligned in the spanwise direction, and the
(streamwise) width of each orifice is bj =0.38 mm. The orifices form a spanwise-
segmented array that spans about 95 % of the test section and is located 8 mm (21bj )
upstream of the step edge. Each module is calibrated outside the test section by
measuring the streamwise velocity distribution above the exit orifice using a miniature
hot-wire sensor. These data are used to compute the characteristic jet velocity Uj which
is averaged over the expulsion part of the actuation cycle. Concomitant measurements
of the total pressure at the orifice (using a miniature pressure probe) are used for
in situ assessment of the jet speed between experiments. The operating frequency
of the actuators is within the range Stθ 0 = fdθ0/U0 = 0.012 − 0.06 (in the present
experiments, fd = 2 kHz, Stθ 0 = 0.05). The magnitude of the actuation is assessed from
the momentum coefficient Rµ which measures the ratio of the momentum flux per unit
width through the jet and the adjacent boundary layer Rµ = U 2

j bj/[U
2
0 (δ0 − δ∗

0 − θ0)].
Three levels of Rµ are used, namely Rµ = 0.06 (low), 0.35 (moderate) and 0.63 (high).

In the present work, the actuation is applied to the shear layer by modulation of the
vorticity flux through the upstream boundary layer which is merely used as medium
for advection of the actuation into the ensuing shear layer. Because of the relatively
short residence length, the effects of the boundary layer stability characteristics
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(e.g. amplification) are not significant. Although the temporal and spatial
characteristics of the vorticity distribution (and hence of the vorticity flux) within
the boundary layer are clearly affected by its Reynolds number which may be
relatively low (in the present experiments Reθ 0 ≈ 312), the strength of the actuation
is actually measured by the degree of modulation of the (given) flux. It is noteworthy
that dissipative, small-scale actuation effected by synthetic jets was successfully
implemented in several flow configurations at significantly higher-boundary-layer
Reynolds numbers (e.g. Shaw, Smith & Saddoughi 2006; Vukasinovic et al. 2009),
indicating that the key element of the actuation is the ability to temporally modulate
the boundary layer’s vorticity flux, regardless of its Reynolds number.

The flow field is mapped using PIV where (as shown in figure 3a) the measurement
domain in the cross-stream x–y plane is within −0.5 <y/H < 0.5 and −0.5 <x <

H < 2.5 (the CCD camera and the laser-sheet are positioned by computer-controlled
traverse mechanisms). The PIV images comprise eleven partially overlapping fields
having image resolution of 26.9 µmpixel−1. Finer resolution (9.3 µm pixel−1) is used to
investigate the interactions between the actuation vortices and the crossflow boundary
layer and to estimate turbulent dissipation. The time-averaged PIV measurements were
based on ensembles of 400–500 image pairs, while each phase of the phase-locked
PIV measurements was based on an ensemble of 300 image pairs (the uncertainties
in the measured time-averaged streamwise and cross-stream velocity components are
estimated to be 3% and 4 %, respectively). Spectral characterization of the flow
is accomplished using a single-sensor hot-wire anemometry within the cross-stream
plane at eight streamwise stations: x/H= 0.1, 0.2, 0.4, 0.6, 0.8, 1, 1.18 and 1.38. Power
spectral densities (p.s.d.) were computed from ensemble averages of the spectra of 80–
100 time records yielding a frequency resolution of 1.8 Hz (with estimated uncertainty
of 4 %).

4. Characterization of the baseline flow
The baseline flow at Reθ 0 = 312 (ReH =43 000) in the absence of actuation is

characterized using PIV within the domain −0.5 <x/H < 2.5, −0.5 <y/H < 0.5.
Figure 4(a) shows a raster plot of the time-averaged vorticity field along with cross-
stream distributions of velocity vectors. As the boundary layer on the surface of
the step evolves into the single-stream shear layer, its cross-stream spreading is
asymmetric about y = 0 owing to strong entrainment on the low-speed side which
biases the cross-stream spreading of the shear layer towards the horizontal surface.
The base flow is clearly not self-similar, either in the near field as the flow separates
from the step, or in the far field owing to the length scale associated with the step.
Figure 4(b) shows a raster plot of the corresponding two-dimensional estimate of the
TKE in the baseline flow. A narrow domain of high TKE immediately downstream
from of the step edge (x/H < 0.6) marks the mixing of the boundary layer. Once the
remnants of the boundary layer diffuse, there is a drop in the magnitude of the TKE.
Farther downstream (x/H > 1.2), the TKE increases as the shear layer is formed and
small-scale motions begin to evolve. The highest TKE levels are consistently higher
within the shear layer core and the highest level appears at the downstream end of
the measurement domain and is associated with the initial (‘natural’) rollup of the
shear layer vortices.

The evolution of the baseline flow was computed within the domain −1 <y/H < 5
and −5 < x/H < 20, using a Fluent code with k-ε model on a uniform mesh with
625 × 120 (x, y) grid points (the computed results exhibited similar convergence to
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finer meshes) and with an inlet cross-stream velocity distribution U (x/H = −5, y)
taken from the experimental measurements. It is found that the computed mean
velocity distributions are similar to the measured time-averaged distributions within
the domain −0.5 <y/H < 0.5 and 0 <x/H < 2.5 and contours of the computed
stream function are shown in figure 4(c). These data indicate that the separated flow
downstream of the step reattaches at x/H ∼ 5.5, which is in accord with experimental
wall pressure measurements (not shown).

Two global parameters that characterize the spreading of the shear layer are
shown in figure 5, namely the streamwise growth of the layer’s local width w(x)
and momentum thickness θ(x). The shear layer width is defined as the difference
between cross-stream elevations where the local (mean) velocity is 0.95 and 0.05U0.
These data show that the streamwise growth rate of the layer can be characterized
by dw/dx ∼ 0.179 and dθ/dx ∼ 0.032, which are comparable to other measurements
in single-stream (e.g. Morris & Foss 2003) and two-stream (e.g. Roberts & Roshko
1985) shear layers indicating that the near-field evolution of both flows are similar.
The width of the computed base flow (not shown) is in good agreement (within 5 %)
with the measured data over the entire measurement domain.

The natural receptivity of the baseline shear layer to external disturbances is assessed
from spectral analysis of hot-wire measurements in the baseline flow (in the absence
of actuation). Cross-stream distributions of velocity power spectra that are measured
at eight streamwise stations through x/H = 1.38 are used to form raster plots of the
energy content in the cross-stream (x–y) plane for each of the spectral components
at 50, 100, 200 and 300 Hz (figure 6a–d, respectively). These distributions clearly
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Figure 6. (Colour online) Raster plot of the spectral energy measured in the base flow at
f = 50 Hz (a), 100Hz (b), 200Hz (c) and 300Hz (d).

show that the most amplified component (within the measurement domain) is 200 Hz
(figure 6c). As predicted by stability analysis (cf. in § 2), the lower frequencies 100 Hz
(figure 6b) and 50 Hz (figure 6a) become amplified (and reach their peak magnitudes)
farther downstream (at x/θ0 > 100 and 140, respectively). Also, it is noteworthy that
the higher spectral component at 300 Hz becomes most amplified relatively close to
the step edge (x/θ0 ≈ 60), indicating that the higher spectral components saturate and
begin to decay near the shear layer’s origin as depicted in figure 2(a).

Each spectral raster plot in figure 6 yields estimates of the streamwise domain
of amplification and the corresponding upstream and downstream amplification
boundaries within the measurement domain as shown in figure 7. The streamwise
locations at which spectral components fn are most amplified based on the stability
analysis of the time-averaged flow field (cf. § 2) are also shown in figure 7. As expected,
these data show that the (most amplified) ‘natural’ frequency decreases with distance
from the step, corresponding to the cross-stream spreading of the shear layer (cf.
figure 5). The analysis predicts that the most amplified frequency decreases with
increasing shear layer momentum thickness θ as fn ∼ 0.016 × U0/θ . While the overall
agreement between the measured amplification boundaries and computed amplified
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(measured) spectral components at f =50, 100, 200 and 300Hz (cf. figure 6), and the
corresponding most amplified frequencies based on a local stability analysis (�).

spectral peaks is good, the results of the linear stability analysis are better aligned
with the upstream boundary of the experimental data.

5. Direct small-scale actuation
5.1. The interaction of the actuation jet with the plane shear layer

Direct actuation of small-scale motions in the separating shear layer is effected by
rapid time periodic ejection of trains of small-scale counter-rotating vortex pairs that
are generated by the spanwise array of synthetic jet actuators described in § 2. The
interaction of these vortices with the crossflow is investigated using high-resolution
PIV measurements within a field of view measuring approximately 25bj on the side,
yielding velocity vectors on a square grid with 0.4bj spacing. The measurements are
taken phase-locked to the actuation waveform in phase increments of �φ = 20◦.

Raster maps of the phase-averaged spanwise vorticity concentrations of the ejected
vortices in the absence and presence of a crossflow are shown in image sequences in
figure 8(a–e) and figure 8(f–j), respectively. Similar to the observations of Smith &
Glezer (1998), in the absence of a crossflow the counter-rotating vortex pair that
forms during each actuation cycle is advected away from the orifice under its own
self-induced velocity as shown in figure 8(a–e). The interaction of the vortex pair
with the crossflow boundary layer upstream of the step edge is evident in figure 8(f)
(φ = 80◦, about 0.22Tjet after the start of the expulsion cycle, φ = 0◦). Compared
to figure 8(a), the symmetry of the vortex pair is disrupted as the clockwise (CW)
vortex is strengthened while the counter-clockwise (CCW) vortex is weakened by the
predominant CW vorticity in the boundary layer (note that the CW vortex from the
previous cycle is still visible at the downstream end of the measurement domain).
As the actuation cycle progresses (figure 8g, φ =140◦), the larger CW vortex begins
to be advected in the streamwise direction at an elevation of y/δ0 = 0.25 while the
weaker CCW vortex begins to translate over and ultimately stretches around the CW
vortex core as is evidenced in the next phase in figure 8(h) (φ =180◦). Here, part of the
elongated CCW vortex is located above the core and its leading edge is almost aligned
with the CW vortex. It is notable that the CW vortex appears to remain at a nearly
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Figure 8. (Colour online) Raster plots of the phase-averaged vorticity ζz(φ)θ0/U0 of an
actuation jet formed at fd =2000 Hz in the absence (a–e) and presence (f–j) of crossflow at
φ = 80◦ (a, f), 140◦ (b, g), 180◦ (c, h), 260◦ (d, i) and 300◦ (e, j). The jet orifice (bj = 381 µm)
is located at x′ = y′ = 0. The boundary layer thickness of the baseline flow δ0 is denoted by a
dashed line.

constant elevation above the surface (y/δ0 = 0.3), and its estimated advection speed is
about 0.5U0. It is also noteworthy that the passage of the CW vortex over the surface
is accompanied by a region of reversed flow beneath it as indicated by a thin wall layer
of CCW vorticity. In the meantime, the CCW vortex which is at a higher elevation
is advected at a higher speed (and therefore farther downstream) and by φ =260◦

(figure 8i), the remnants of the CCW vorticity are rolled into a core that has about
the same diameter as the CW vortex, but with a much weaker vorticity distribution.

Given the significant difference in the relative strength of the CW and CCW vortices,
it appears that the actuation of the separating shear layer downstream of the step
is effected by the train of CW vortices. These vortices interact with and modulate a
vorticity layer having predominantly the same sense. As discussed below, for a given
boundary layer thickness, the magnitude of the modulation depends on the strength
of the CW vortex train and therefore on the jet/boundary layer momentum flux
ratio Rµ. For the images shown in figure 8(f–j), Rµ is selected to be 0.08 so that the
characteristic diameter of the actuation vortices is smaller than the boundary layer
thickness and the vortices are advected within the boundary layer. This momentum
flux ratio is just slightly above the lowest level of the three characteristic actuation
levels in the present investigation (Rµ = 0.06, 0.35 and 0.63).

The dynamics of the interactions between the vortex train and the shear layer
is assessed from PIV measurements that are taken phase-locked to the actuation
waveform within the streamwise domain −30 <x/θ0 < 115 at the three jet momentum
flux ratios. Maps of the resulting spanwise vorticity concentrations are shown in
figure 9(a–c) for Rµ = 0.06, 0.35 and 0.63, respectively. At the low-momentum flux
ratio (figure 9a), the interaction of the actuator vortices with the crossflow is primarily
confined to the wall boundary layer (cf. figure 8). The CW vorticity layer near the
downstream edge of the step is temporally and spatially modulated with successive
CW vortices which have a nominal diameter dv/δ0 ≈ 1/3 and are separated by the
weak remnant of the CCW vortices. The coherence of the CW vortices diminishes
rapidly within the shear layer, and by x/θ0 ≈ 20 the vorticity within the shear layer
appears to be featureless. As Rµ is increased to 0.35 (figure 9c), the CW actuation
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Figure 9. (Colour online) Phase-averaged (a, c, e) and ensemble-averaged (b, d, f) vorticity
fields ζZθ0/U0 with overlaid velocity profiles for the actuated flow at St = 0.05 and Rµ = 0.06
(a, b), 0.35 (c, d) and 0.63 (e, f). The actuator orifice is marked by a triangle, and the boundary
layer thickness of the base flow δ0 is denoted by a dashed line.

vortices have larger vorticity concentrations and diameter (dv/δ0 ≈ 1/2). While the
vortex train remains within the boundary layer up to the downstream edge of the
step, the CW vortices begin to protrude through the edge of the boundary layer as
the shear layer is formed. These vortices are advected faster than the corresponding
actuation vortices in figure 9(a) because they interact with the separating shear
layer along its high-speed edge. It is remarkable that the vortex train maintains its
coherence along the edge of the shear layer through most of the measurement domain
in figure 9(c), followed by ‘merging’ at the high-speed edge at x/θ0 > 100.

Further increase in the jet momentum flux ratio (Rµ = 0.63) (figure 9e) leads to
protrusion of the jet vortices through the boundary layer just upstream of the step
edge, and they are advected above the high-speed edge of the forming shear layer
until they begin to lose their coherence (at least relative to the actuation frequency) by
x/θ0 ≈ 75. As a result of this interaction, the shear layer spreads farther towards the
low-speed side (e.g. compare figures 9a and 9e) which is accompanied by a reduction
in the magnitude of the vorticity concentrations in the upper half of the shear layer
and by increased entrainment from the low-speed side as manifested by the upward
flow along the vertical wall of the step.

The phase-averaged data are accompanied by maps of the time-averaged spanwise
vorticity concentrations (along with overlaid cross-stream velocity distributions) in the
domain −75 <x/θ0 < 360 as shown in figures 9(b), 9(d) and 9(f). At the low momentum
flux ratio (Rµ = 0.06) (figure 9b), there is little or no difference between the time-
averaged velocity and vorticity fields of the unforced and forced flows (the vorticity
magnitude decreases only slightly in the forced flow). However, as the momentum flux
ratio is increased (Rµ = 0.35) (figure 9d), and the actuation vortices interact with the
high-speed edge of the forming shear layer, the shear layer spreads more towards the
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and the actuated flows at St =0.05 and Rµ = 0.06 (�), 0.35 (�) and 0.63 (�).

low-speed side and the magnitude of the vorticity within the shear layer decreases.
At the highest Rµ considered here, the vorticity layer associated with the actuation is
separated from the shear layer (figure 9f), but they merge at x/θ0 > 200. These data
indicate that the streamwise location of the interaction between the actuation jet and
the ensuing shear layer downstream of the step can be adjusted by the jet momentum.

5.2. Modification of the mean flow field

One of the important consequences of small-scale actuation from the standpoint of
inviscid stability analysis and the evolution of vortical structures within the shear layer
are the induced changes in the mean flow, which in turn affect (and, as shown below,
reduce) the receptivity of the altered flow to broadband disturbances. The effects of
the actuation on the mean flow are demonstrated by considering the alteration of
velocity distributions and of the characteristic cross-stream scale (figures 10 and 11).
Cross-stream distributions of the streamwise velocity that are measured a short
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time-averaged flow at Rµ = 0.35 (�).

distance downstream from the step edge (at x/θ0 = 14.8) are shown in figure 10. It is
remarkable that despite the significant modulation of the vorticity in the boundary
layer (cf. figure 9a), the low actuation level (Rµ = 0.06) results only in subtle alteration
of the mean flow (near y/θ0 = −3). At moderate actuation level (Rµ =0.35), the mean
velocity distribution begins to exhibit significant changes relative to the base flow
which are manifested as cross-stream spreading near the high- and low-speed edges.
The distortion is intensified at the high actuation level (Rµ =0.63), and the presence
of the CW actuation vortices near the high-speed edge (cf. figure 9e) results in an
inflection point near y/θ0 = 10.

The changes in the characteristic cross-stream scale of the shear layer in the presence
of actuation are illustrated by the streamwise variation of the momentum thickness
θ(x) (figure 11). As noted in connection with figure 10, at the lowest actuation level
(Rµ = 0.06) there is no significant change in θ(x) relative to the baseline aside from a
small increase that is followed by a similarly small decrease in the domain x/θ0 > 100.
Along with the distributions of the time-averaged velocity and vorticity fields in
figure 9(b), this indicates that the low actuation level does not alter the mean baseline
flow significantly even though it clearly affects some of its dynamic characteristics
(e.g. the TKE) (cf. figure 18). As shown in figures 9(d) and 9(f) and figures 10(b) and
10(c), higher actuation levels lead to a notable increase in shear layer spreading and
consequently in the corresponding momentum thickness. Note that at Rµ = 0.35 dθ/dx

is initially higher than in the baseline flow, but it decreases to the baseline level at
x/θ0 ≈ 100. The increase in dθ/dx is even more accentuated at Rµ = 0.63 and there is
a peak at x/θ0 ≈ 140 which is followed by a somewhat lower growth rate than in the
baseline flow.

To illustrate the changes in the stability of the flow that are effected by actuation
at moderate and high Rµ, streamwise distributions of the ‘most unstable’ frequency
f ∗

n normalized by the corresponding unstable frequency of the baseline shear layer
are computed based on the ‘global’ Strouhal number Stθg = 0.016 of the base flow
(figure 12), assuming that Stθg does not change significantly in the presence of
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actuation. At the lowest actuation level there is a small reduction in f ∗
n for x/θ0 < 100

(up to 15 % downstream of the step edge). However, at Rµ =0.35 and 0.63, f ∗
n is

significantly lower relative to the base flow (in the absence of actuation). The reduction
is strongest immediately downstream of the step followed by a monotonic, almost
linear streamwise increase and ultimately asymptotic saturation (to 0.8 and 0.7 for
Rµ = 0.35 and 0.63, respectively).

The significant diminution in the magnitude of the most unstable frequency signals
a shift in the stability band in the presence of actuation and indicates that the flow
becomes more stable to frequencies as low as 0.4fn. This means that small-scale
actuation leads to attenuation of a frequency band around the ‘natural’ frequency of
the base flow, rendering the forced flow stable to perturbations within this frequency
band. The data for Rµ = 0.35 in figure 12 are compared with the frequencies of
the most amplified perturbations that are computed using linear stability analysis
of the measured time-averaged velocity field. The close match between the most
unstable frequencies predicted by the linear stability analysis and the experimental
data is another indication that the flow becomes more stable in the near field and
that the unstable frequency band is lowered. Furthermore, the amplification of lower
frequencies farther downstream is associated with the formation of vortical structures
having larger characteristic scale than in the base flow. It is interesting to note that
Dandois et al. (2007), who simulated high-frequency control of the flow over a rounded
ramp, reported that the actuation resulted in an increase in the ‘natural’ frequency of
the base flow. Even though their stability analysis predicted a reduction in the most
amplified frequencies in the presence of actuation, the dominant frequencies in the
base flow were actually significantly lower than the stability predictions, perhaps as a
result of feedback from the separated flow.

5.3. Spectral analysis

As discussed in § 1, small-scale actuation has a profound effect on the spectral
content of the base flow by altering the natural receptivity of the shear layer to
external disturbances and thereby attenuating low-frequency spectral components.
The spectral receptivity in the near field of the present base flow was discussed
in connection with figure 6 for spectral components above and below the ‘most
amplified’ frequency. The changes in the receptivity of the flow in the presence of
actuation (at Stθ = 0.05) are shown in raster plots of the same spectral components
(f = 50, 100, 200 and 300 Hz) at Rµ =0.06, 0.35 and 0.63 (figure 13). Perhaps the most
prominent feature of the raster plots of each spectral component is the reduction in
magnitude with increasing actuation amplitude. Although this reduction is apparent
throughout the entire cross-stream plane, it is most acute near the high-speed edge,
and is somewhat milder at the low-speed edge. The stronger effect near the high-
speed edge at high momentum ratios is the proximity of the actuation vortex train
(cf. figure 9). These effects are particularly apparent at low frequencies (f = 50 and
100 Hz) where actuation at Rµ = 0.35 and 0.63 leads to precipitous diminution in
spectral magnitudes indicating a significant delay in streamwise amplification. The
reduction in the amplitude of the spectral components that are within the ‘most
amplified’ band (f =200 Hz) and above it (f =300 Hz) indicates that the near field
(and hence the entire flow) becomes stable to perturbations that would be normally
amplified in the near field of the base flow.

An important feature of small-scale actuation is the accelerated transfer of energy
from the large to small scales within the flow. It is useful to consider the crossover
frequency fc that separates between spectral bands in which the magnitude of the
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Figure 13. (Colour online) Raster plot of spectral energy at f = 50 Hz (a–d), 100 Hz (e–h),
200Hz (i–l) and 300 Hz (m–p) in the presence of actuation at St = 0.05 and Rµ = 0 (a, e, i, m),
0.06 (b, f, j, n), 0.35 (c, g, k, o) and 0.63 (d, h, l, p).

spectral components in the presence of actuation is smaller or larger than in the base
flow (cf. figure 1). Figure 14 shows an example of power spectra that are measured
in the absence and presence of actuation (at the three actuation levels) near the high-
and low-speed edges (y/θ0 = 5.7 and −5.7) of the shear layer, and at the elevation of
the step (y/θ0 = 0). The absence of discrete low-frequency spectral peaks in the base
flow is the result of the proximity of the measurement station to the edge of the step
and of deliberate tripping of the upstream boundary layer. The power spectra of the
base flow along the low-speed edge and y = 0 exhibit significant energy content at
low frequencies (f/fd < 0.2, where fd is the actuation frequency) which is associated
with entrainment of low-speed fluid, and the spectral content drops sharply above
this band. The magnitude of the spectral components within the same band near the
high-speed edge is at least an order of magnitude lower but the spectral components
at the high frequencies f/fd > 0.5 are significantly stronger, indicating the presence
of small-scale motions near the high-speed edge.

While specific details of the differences between power spectra in the absence and
presence of actuation in figure 14 clearly depend on cross-stream elevation, all the
spectra of the forced flow exhibit sharp peaks at actuation frequency f/fd = 1 and,
concomitantly, a significant increase in the energy content of the small scales even
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Figure 14. Power spectra of velocity fluctuations for the absence (grey) and presence of
actuation (black) at St = 0.05 and Rµ = 0.06 (a–c), 0.35 (d–f) and 0.63 (g–i), measured at
x/θ0 = 14.8 and y/θ0 = −5.7 (a, d, g), 0 (b, e, h) and 5.7 (c, f, i) (cf. figure 10).

though the actuation is applied at a discrete frequency. As expected, based on the
images in figure 9, the peaks at the actuation frequency are strongest along the high-
speed edge of the shear layer and at its centre owing to the formation and passage of
the vortex train that is induced by the actuation within the upstream boundary layer.
The interaction with these small-scale high-frequency vortices along the high-speed
edge of the shear layer leads to influx of small-scale motions and, as shown below, to
increased turbulent energy production (figure 18b). On the other hand, the increased
energy content at the large scales along the low-speed edge is apparently the result of
increased shear layer spreading and engulfing of nearly stagnant fluid from below. The
small-scale energy content increases further as turbulent energy production increases
and the overall energy transfer to the small scales is accelerated.

Perhaps the most intriguing energy redistribution in the presence of actuation takes
place within the cross-stream centre of the shear layer (around y/θ0 = 0), as shown
in figures 14(b), 14(e) and 14(h). There is a notable increase in energy content over
a broadband of small scales above the crossover frequency fc that is accompanied
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Figure 15. (Colour online) Raster plots of the crossover frequency fc/fd for actuation at
St = 0.05 and Rµ = 0.06 (a), 0.35 (b) and 0.63 (c).

by a decrease in the energy of the large scales (low frequencies) below fc. In fact, as
shown in connection with figure 18(a), although the actuation leads to an overall local
increase in the (total) TKE, the energy content of the large scales at y/θ0 = 0 actually
decreases while the energy of the small scales increases. Therefore, it can be argued that
the actuation affects the energy balance between the low and high ends of the spectrum
by accelerating transfer to the small scales and ultimately enhancing dissipation.

Figure 15 shows raster plots of the normalized crossover frequency fc/fd such that
the bands fc <fd and fc >fd are marked by red and blue shades, respectively (the low
and high limits in which all spectral components of the forced flow are below or above
the corresponding components in the base flow are marked by the darkest blue and
red, respectively). In addition, the contour fc/fd = 1 is shown in white to separate the
bands in which spectral components below the actuation frequency fd are attenuated
and where spectral components above fd are amplified. Even when the changes in the
time-averaged forced flow are almost indiscernible (Rµ = 0.06, figure 15a), the initial
attenuation in the energy of the large scales spreads almost uniformly across the shear
layer, and the range of affected scales rapidly spreads to include the small scales.
As shown in figure 15(a), the wideband increase in the energy of the small scales
immediately downstream from the edge of the step is rapidly dissipated downstream,
and the energy over all scales is lowered for x/θ0 > 35. This broadband suppression
of flow fluctuations indicates a stabilizing effect of the actuation. It should be noted,
however, that the reduction in spectral energy diminishes as the forced flow relaxes
to the unforced (base) state farther downstream (cf. figures 11 and 12).

Figure 15(b–c) indicate that when Rµ is increased, the transfer of energy among the
scales is altered. At Rµ = 0.35 (figure 15b) there is a sharp broadening of the range of
scales with lower energy in the centre of the shear layer for x/θ0 > 30, but both the
high- and low-speed edges exhibit an overall increase in spectral energy across a wide
range of scales. Near the high-speed edge, the domain of increased energy (marked
as domain A) is induced by the influx of the high-frequency vortices and increased
turbulent energy production (see figure 18b). This domain becomes narrower farther
downstream as the high-frequency vortices lose their coherence and dissipate, and
turbulent production weakens. Along the low-speed edge (marked as domain B), the
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actuation leads to an increase in the spectral energy due to the enhanced spreading
of the shear layer, and initially also due to the increased turbulent energy production.
Since the energy in this domain is mostly concentrated in the large-scale motions
associated with the entrained fluid, the effect of the actuation is not felt within the
present measurement domain and little reduction in energy is detected. The strongest
decrease in energy occurs within the centre of the shear layer (domain C), which
widens slowly in the streamwise direction. As Rµ is increased to 0.63 (figure 15c), the
three domains in figure 15(b) are pushed farther downstream predominantly because
the actuation vortex train that is advected along the high-speed edge of the shear
layer begins to interact with the layer farther downstream. As a result of the advection
of the actuation vortices and the downward deflection of the shear layer, regions of
higher amplitude spectral components extend along the high- and low-speed edges
of the layer and the reduction of spectral energy in the centre of the shear layer is
delayed. Therefore, suppression within domain C is evident only at the downstream
end of the measurement domain.

5.4. Turbulent kinetic energy

The effects of the actuation on cross-stream distributions of TKE (TKE estimated
as k = (u′2 + v′2)/2) are shown in figure 16(a–c). Close to the step edge (x/θ0 = 14.5)
(figure 16a), the TKE distribution in the base flow has a narrow peak near the centre
of the shear layer. Actuation at Rµ =0.06 results in a slight alteration of the TKE
showing a small increase in spreading to the low-speed side and a 16 % reduction in
the peak TKE (0.024–0.02) compared to the base flow. As Rµ is increased to 0.35, the
shear layer spreading on the low-speed edge becomes more prominent, with the peak
TKE exceeding the base level. There is also a significant increase in the TKE level at
the high-speed edge due to presence of the CW jet vortices (cf. figure 9c).

The cross-stream separation between the induced vortex train and the shear layer
is more pronounced at Rµ = 0.63 and is marked by the presence of two distinct
cross-stream TKE peaks. A similar double peak is also apparent in the corresponding
vorticity concentrations (figure 9f). The presence of the small-scale vortex train along
the high-speed edge of the shear layer results in a significant increase in TKE within
the shear layer (almost twice the base level), and in a stronger spreading towards
the low-speed side. It is remarkable that at the next streamwise measurement station
(x/θ0 = 29) (figure 16b), the TKE peaks for Rµ = 0.63 are merged, and the overall
levels are considerably lower and commensurate with the TKE levels at the lower
actuation levels. It is also noteworthy that the TKE peaks at all actuation levels are
lower than the peak of the base flow. These trends continue at the last streamwise
station (x/θ0 = 72.5, figure 16c), where the direct contribution of the induced vortex
train along the high-speed edge weakens, while the shear layer spreading at the low-
speed edge increases with Rµ. Of particular note is the diminution in TKE at the low
actuation level compared to the unforced flow even though the induced changes in the
mean flow due to the actuation are very subtle. As noted in § 1, Dandois et al. (2007)
reported similar suppression of TKE during high-frequency actuation of the flow over
a rounded ramp. These authors observed that following a sharp increase immediately
downstream of the actuation source there was a drop in TKE to levels that were
below the levels of the base flow. The strong suppression of TKE in the actuated flow
gradually diminished downstream and ultimately reached the levels of the base flow.

The earlier work of Vukasinovic et al. (2004) established a direct relationship
between the strength of the actuation jet and the turbulent dissipation rate ε in the
near field. The effect of small-scale actuation on ε is quantified using highly resolved
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Figure 16. Cross-stream distributions of the TKE k/U 2
0 at x/θ0 = 14.5 (a), 29 (b), and 72.5

(c), in the absence (�) and presence of actuation at St = 0.05 and Rµ = 0.06 (�), 0.35 (�) and
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PIV measurements within the formation region of the shear layer in the absence
and presence (Rµ =0.63) of actuation. In the present measurements, the spatial
resolution is 150 µm (corresponding to a spectral components at about 46 kHz), which
is well within the dissipation range of the flow (cf. figure 14). The 25 mm × 25 mm
measurement domain is centred about the step edge and consists of nine partially
overlapping views. Assuming that the average magnitudes of the spanwise gradients of
velocity fluctuations are similar to the in-plane fluctuations, the turbulent dissipation
rate is estimated from the PIV measurements by

ε =3ν

[(
∂u

∂y

)2

+

(
∂v

∂x

)2

+ 2

(
∂u

∂y

∂v

∂x

)]
+ 4ν

[(
∂u

∂x

)2

+

(
∂v

∂y

)2

+

(
∂u

∂x

∂v

∂y

)]
.

(5.1)
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Figure 17. (Colour online) Raster plots of the estimated TKE dissipation rate ε · θ0/U 3
0 for

the baseline flow (a), and in the presence of actuation at St = 0.05 and Rµ = 0.63 (b).

The work of Tanaka & Eaton (2007) demonstrated that estimates of the TKE
dissipation rate from two-dimensional PIV measurements depend strongly on the
spatial resolution. These authors noted that when the PIV vector spacing is larger
than the Kolmogorov scale η, ε is underestimated, due to the inherent filtering of
the fine scales. On the other hand, if the spacing is smaller than η, the error rapidly
increases with the decrease in the spacing due to the increase in measurement noise.
Based on the present spatial resolution and η, it is estimated that the vector spacing
is about the same as the Kolmogorov scale, and therefore no significant errors due to
noise are introduced. Based on the results of Tanaka & Eaton (2007), the calculated
ε underestimates the TKE dissipation by about 20 % owing to resolution limitations.
Figure 17 shows raster plots of the estimated TKE dissipation rates for the unforced
and forced flows. In the absence of actuation (figure 17a), the dissipation is clearly
confined to the centre segment of the shear layer. In the presence of actuation (applied
upstream of the step edge) there is a nearly eight-fold increase in the magnitude of the
measured dissipation immediately downstream of the step (figure 17b) and in its spatial
extent relative to the baseline flow. The increased dissipation rate is more pronounced
along the high-speed side of the shear layer than on the low-speed side, as a direct
consequence of the advection of the small-scale vortices into the shear layer. As the
flow evolves farther downstream, the absolute magnitude of ε decreases and eventually
approaches the magnitude of the base flow. At the same time, the domain of increased
dissipation spreads in the cross-stream direction and becomes more pronounced along
the low-speed edge, and the peak in ε is displaced towards the low-speed side.

Distributions of integrated TKE across the shear layer in the absence and presence
of actuation are shown in figure 18(a). As expected, in the presence of actuation the
total energy k across the shear layer downstream of the step is larger than in the
base flow and the increase is proportional to Rµ. However, the effect of the actuation
diminishes farther downstream. For the intermediate actuation level, the curves for
the baseline and actuated flows coincide for x/θ0 > 70, while at the high actuation
level, k approaches the base level by x/θ0 ≈ 280. While at the lowest actuation level
the changes in the mean flow are minute, it actually results in lower k than in the base
flow throughout the measurement domain (for x/θ0 > 20). Since the forced flows at
intermediate and high Rµ are significantly wider than the baseline (cf. figure 11), the
TKE levels within the forced flow are actually significantly lower than in the unforced
flow. Alternatively, if the characteristic length scale in figure 18(a) is changed from
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θ0 to the local θ , the dimensionless k falls below the baseline level regardless of the
actuation level.

The effect of the actuation on turbulent production

 = − uu
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+

∂V̄
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)
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is assessed from integration of  across the entire shear layer (figure 18b). In the
absence of actuation,  increases monotonically up to x/θ0 = 60 and thereafter is
nearly invariant with x. At the low actuation level, there is a weak increase in 

through x/θ0 < 20 which is followed by a significant suppression of overall production
throughout the measurement domain. At the intermediate actuation level there is a
more pronounced and slightly longer domain of increased  (x/θ0 < 35) which is
followed by a second domain in which the production falls below the level of the
baseline. Finally, even in the presence of high actuation level, in spite of a large initial
increase in , the turbulence production within the shear layer falls below that of the
base flow, beginning as far upstream as x/θ0 ≈ 40. It is important to note that this
upstream increase in production of TKE coincides with the significant enhancement
of dissipation ε (cf. figure 17), and that these two coupled effects dominate the
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upstream development of the forced shear layer, marking enhanced dissipation of
energy from the mean flow by the induced small-scale motions. Similarly, Dandois
et al. (2007) also reported that high-frequency actuation led to a significant decrease
in turbulent production (by about 30 %) over the base level.

The present results indicate that the actuation-induced closely coupled and
strongly enhanced turbulent energy production and dissipation rate prematurely
drain energy from the mean flow, and thereby lead to its stabilization to low-
frequency perturbations. The spatial extent of the stabilized domain depends on the
momentum flux ratio of the actuation. At low actuation levels the actuation vortex
train is advected into the forming shear layer and therefore the stabilized domain
commences closer to the shear layer origin. However, at higher actuation levels, the
actuation vortices affect the shear layer farther downstream and therefore extend the
streamwise stabilized domain.

6. Concluding remarks
The near-field evolution of small- and large-scale motions in a turbulent shear

layer that forms downstream of a backward-facing step is altered by direct small-
scale actuation that is effected within the boundary layer over the step surface. The
actuation is applied using surface-integrated synthetic jets operating at frequencies
that are significantly higher than the most unstable frequencies of the base flow,
and within the dissipation range of the emerging shear layer. The actuation induces
time-periodic modulation of the vorticity flux within the boundary layer, which is
the primary source of vorticity for the separated shear layer, by the formation and
advection of a train of discrete vortices having a characteristic cross-stream scale
and streamwise spacing that are typically smaller than the boundary layer thickness.
At low actuation levels, the vortex train is advected into the forming shear layer
while at higher actuation amplitudes the train interacts with the shear layer along
its high-speed edge with significant impact on the layer’s cross-stream spreading and
entrainment. The range of the interaction domain can be varied with the momentum
flux of the actuation jet. The alteration of the base flow as a result of the actuation
is captured by detailed, high-resolution velocity measurements in the cross-stream
plane of the flow using phase- and ensemble-averaged PIV and single-sensor hot-wire
anemometry.

The present work demonstrated that small-scale actuation has a profound effect
on the evolution of both the large- and small-scale motions within the near field of
the shear layer. Stability considerations show that when the actuation frequency is
higher than about twice the highest ‘natural’ frequency along the shear layer (i.e. when
ω > 2ωn,0), the ‘natural’ near-field evolution of the layer is suppressed. Actuation at
finite levels can be characterized by nonlinear interactions between the high-frequency,
low-frequency and the global modes of the flow. It results in reduced receptivity to
low-frequency disturbances, and in decrease of energy transfer and feedback effects of
the flow’s global mode. Spectral measurements show that even though the actuation
is applied at a single frequency, there is a broadband increase in the energy of the
small-scale motions that is accompanied by a decrease in the energy of the large-scale
motions. These large scales are typically associated with the ‘most amplified’, unstable
modes of the base flow. The energy reduction of these motions is the result of both
increased entrainment and mixing of high- and low-speed fluid that is manifested by
increased cross-stream spreading, and simultaneous increases in the mean cross-stream
width and in turbulent production.
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Figure 19. Power spectra of velocity fluctuations for the absence (grey) and presence (black)
of actuation at St = 0.05 and Rµ = 0.35 at y|0.5U0
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The near field of the forced shear layer has three distinct domains. The first
domain (D-1), immediately downstream of the step edge (x/θ0 < 50), is dominated by
significant concomitant increases in the production of the TKE and its cross-stream
integral (figures 18a and 18b), the cross-stream width of the shear layer (figure 11),
and in the dissipation of TKE (figure 17b). In the second streamwise domain (D-2),
the streamwise rates of change of these quantities become similar to the corresponding
rates in the unforced flow (e.g. θ(x) in figure 11 and TKE(x) in figure 18a) although
their magnitudes are substantially different. For example, as noted in connection with
the discussion of figure 18, the turbulent production in the forced flow is lower than
the production in the unforced flow, and, depending on the actuation level, TKE(x) in
D-2 is either below (Rµ = 0.06) or above (Rµ = 0.35, 0.63) the corresponding levels of
the baseline flow indicating a mismatch between production and dissipation in D-2.

That the streamwise rates of change of these quantities are similar to the corres-
ponding rates in the unforced flow, suggests that the effects of the actuation in D-2
are diminished to the point where the shear layer begins to resume its characteristic
‘natural’ streamwise evolution. However, what primarily characterizes the forced flow
in this domain is the evolution of its spectral content. An example is shown in
figure 19 which includes power spectra of the baseline and forced flows (Stθ 0 = 0.05
and Rµ = 0.35) at four streamwise stations (x/θ0 = 14.5, 58, 203.2 and 348.3). These
spectra are taken at cross-stream elevations where the streamwise velocity is U0/2.
While in D-1 (x/θ0 = 14.5), there is a significant increase in the small-scale motions
(as may be expected from the increase in production in figure 18b), there is also a
significant reduction in the magnitude of the spectral components that correspond
to the large-scale motions. Within D-2, the magnitudes of the spectral components
at the small scales (high frequencies) begin to coincide with the magnitudes of the
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corresponding spectral components in the baseline flow indicating that dissipation
outpaces production. It is noteworthy that although the cross-stream extent of the
forced flow is larger than in the baseline, the comparable streamwise growth rate of
the two flows suggests that entrainment is similar. The data in figure 11 indicate that
in the presence of strong actuation (Rµ = 0.63) the streamwise growth rate decreases
somewhat when the actuation vortex train merges with the high-speed edge of the
layer.

The second feature of the spectra in figure 19(b, c) is the lower magnitude of the
spectral components that correspond to large-scale motions compared to the baseline
flow. This effect persists through the entire domain D-2 (up to about x/θ0 = 350)
where the two spectra become almost indistinguishable. These data indicate that
within D-2 the spectral components corresponding to the frequencies associated with
the large-scale motion remain suppressed and amplify slowly. In fact, figure 13 shows
that the actuation results in significant attenuation of spectral components up to
300 Hz, while figure 12 shows the streamwise reduction in the magnitude of the
most amplified frequency. Therefore, it may be concluded that while amplification of
unstable modes in the forced shear layer resumes in D-2, the most amplified modes
that emerge at the downstream end of D-2 have significantly lower frequencies than
the unforced flow would have at the same streamwise position. The mechanisms of
shear layer stabilization proposed by Stanek et al. (2002) are in accord with the
structural modification of the shear layer within D-2.

Finally, in the third domain (D-3), the inviscid instability of the shear layer resumes
in what might be described as a ‘new’ baseline flow but, as noted above, with
significantly lower unstable frequencies than the unforced flow would have had at the
same streamwise position (in the present flow, this domain nominally extends beyond
x/θ0 ≈ 350).

Appendix. A reduced-order model
Consider a two-dimensional unsteady incompressible flow of Newtonian fluid

around a backward facing step of height H with far-field speed U0 (see figure 3a). The
axial and vertical distances from the step corner are scaled with H, time is scaled with
H/U0, and the velocity components are scaled with U0. The flow motion is described
by the Navier–Stokes equations in the non-dimensional vorticity and stream function
formulation:

χt + ψyχx − ψxχy = Re(χxx + χyy)/2,

χ = − (ψxx + ψyy).

}
(A 1)

Here ψ(x, y, t) is the stream function and χ(x, y, t) is the vorticity. The flow axial
and transverse velocity components are given by u =ψy, v = −ψx and Re = ρU0H/µ,
where ρ and µ are the flow constant density and viscosity.

The flow is subjected to the following boundary conditions. Along the inlet section
at x = 0 and y > 0 the incoming stream function and the vorticity are prescribed for
t > 0 as follows:

ψ(0, y, t) =ψ0(y) + κg(y, t),

χ(0, y, t) = − ψ0yy − κgyy(y, t).

}
(A 2)

Here, ψ0(y) describes the inlet base volumetric flux, resulting in a base incoming
axial velocity profile U (y) = ψ0y(y), representing a boundary layer, where U is zero
at y = 0 and tends to one as y increases. This base velocity profile is perturbed by a
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Figure 20. (Colour online) The perturbation functions of the global mode ψg (a) and
χg (b) at Re = 1000.

perturbation flux of given characteristic level κ and shape, g(y, t) representing a train
of incoming vortices within the boundary layer, where typically 0 � κ 
 1, g(0, t) = 0,
and g tends to zero as y increases. Along the step walls the no penetration and no
slip conditions are set, i.e. for all time t > 0:

For − 1 � y < 0 : ψ(0, y, t) =ψx(0, y, t) = 0,

For 0 � x � ∞ : ψ(x, −1, t) =ψy(x, −1, t) = 0.

}
(A 3)

As y → ∞ it is assumed that the transverse velocity approaches zero, i.e. for all time
t > 0:

ψx(x, y → ∞, t) = 0. (A 4)

Also, as x → ∞, the transverse velocity and vorticity axial gradient approach zero for
all time t > 0:

ψx(x, y, t) =χx(x, y, t) = 0. (A 5)

The direct numerical simulation code of Hawa & Rusak (2001) is used to establish
a base state solution Ψ (x, y) of (A 1)–(A 5) at a fixed Re, with an inlet axial velocity
profile U (y) = tanh(y/β) and with no upstream excitation, i.e. κ =0 for all time
t. Moreover, the unsteady simulations also show that as the non-actuated flow
asymptotically converges in time to the steady state Ψ (x, y), it is characterized by a
global mode of exponential decay in time, i.e. for a sufficiently large t

ψ(x, y, t) =Ψ (x, y) + exp(−σ t)ψg(x, y). (A 6)

For example, the computations show that at Re = 1000 and with β = 0.03 the decay
rate σ =0.014 and the global mode perturbation stream function ψg and related
vorticity χg are centred near the reattachment point at x ∼ 10H , where the shear
layer transitions into a wall boundary layer, and decay with distance from this point
(figure 20).
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For a high Re flow, the shear layer of the baseline backward-facing step flow
develops over a longer streamwise transverse distance, typically of the order of the
separation zone length ls � H . Let ε =H/ls 
 1. The axial distance is rescaled so that
x̃ = εx. Then, the base steady flow solution of (A 1)–(A 5) is described by the stream
function: Ψ = Ψ (x̃, y; Re). The base axial velocity is given by u =Ψy(x̃, y; Re) and
vertical velocity is v = − εΨx̃(x̃, y; Re).

Following the asymptotic multi-scale linear stability analysis of Rusak & Eisle
(2005) for sufficiently small ε and κ , it can be shown that when the upstream
excitation is characterized by a non-dimensional (real) frequency ω, the perturbed flow
stream function ψ may be composed of the base flow stream function Ψ (x̃, y; Re),
a perturbation ψ1 of the shear layer response to the excitation as if it is a free
layer (the forced behaviour), and the global mode of the non-actuated flow ψg (the
homogeneous behaviour), i.e.

ψ(x, y, t; δ, Re, ω) =Ψ (x̃, y; Re) + κψ1(x, x̃, y, t; Re, ω) + γ (t)ψg(x̃, y; Re)

+ O(ε2, κ2, εκ, γ 2, εγ, κγ ). (A 7)

Here, the perturbation function ψ1 is given in terms of the regular scale x and the
long scale x̃ by

ψ1(x, x̃, y, t; Re, ω) =A(x̃; Re, ω) exp

[∫ x

0

αI (x̃
′; Re, ω) dx̃ ′

]

×
√

φ2
R(x̃, y; Re, ω) + φ2

I (x̃, y; Re, ω) sin

(
ωt −

∫ x

0

αR(x̃ ′; Re, ω) dx̃ ′ + ϕ(x̃; Re, ω)

)
.

(A 8)

The first and third terms in (A 8) describe a slower change of the perturbation
with distance, whereas the integral terms in (A 8) describe the perturbations growth
rate and periodicity over a regular scale. For a given frequency ω, the complex
eigenfunction φ = φR +iφI and the complex wavenumber α = αR +iαI are determined
from the eigenvalue problem of the linear spatial stability analysis:

L(φ) = (Ψy(x̃, y; Re)α − ω)(φyy − α2φ) − αΨyyy(x̃, y; Re)φ

+
i

Re
(φyyyy − 2α2φyy + α4φ) = 0,

φ(y = −1, x) = 0 and as y → ∞, φ → 0.

⎫⎪⎪⎬
⎪⎪⎭ (A 9)

The function A(x̃; ω) in (A 8) is described by the equation

Ax̃ + q(x̃; ω)A= 0. (A 10)

Here q(x̃; ω) =
∫ ∞

−1
bφ̄ dy/

∫ ∞
−1

aφ̄ dy, φ̄ is the complex conjugate of φ, and

a = 2ωαφ + Ψy(φyy − 3α2φ) − Ψyyyφ,

b = ω(αx̃φ +2αφx̃) + Ψy(φyyx̃ − 3α2φx̃ − 3ααx̃φ) − Ψyyyφx̃ − Ψx̃(φyyy − α2φy) + Ψyyx̃φy.

The solution of (A 10) shows that A behaves like

A(x̃; ω) = exp

[
−

∫ x̃

0

q(x̃ ′; ω) dx̃ ′
]

. (A 11)

Note that the amplitude γ (t) of the global mode is excited by the magnitude of
the perturbation κψ1 at some distance away from the step section, but cannot be
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determined by a linear analysis. The nonlinear analysis is the subject of a follow-on
paper.
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